Saturday, 12 Oct 2024

Claves para ayudar a mitigar el sesgo en los sistemas de Inteligencia Artificial

 
 
   

 

No cabe duda de que los sesgos humanos pueden influir en los algoritmos de inteligencia artificial (IA) y dar lugar a resultados discriminatorios. Sin embargo, es difícil discernir cuán generalizados son estos sesgos en las tecnologías que desarrollamos y utilizamos en nuestra vida. Aunque mitigar los sesgos en IA puede ser un reto para algunos modelos y sistemas automatizados de toma de decisiones, es imperativo reducir la probabilidad de resultados indeseables. Nuestra sociedad continúa evolucionando con la rápida innovación de las tecnologías emergentes, especialmente la IA. La industria, la academia, los gobiernos y los consumidores tienen la responsabilidad compartida de asegurar que los sistemas de IA sean debidamente probados y evaluados ante la posibilidad de sesgos. Además, cualquier acción o práctica prohibida por la legislación antidiscriminatoria vigente también debería aplicarse. Para respaldar las estrategias de mitigación de sesgos, las organizaciones deben trabajar para crear, implementar y poner en práctica los principios éticos de la IA y garantizar una gobernanza adecuada para una revisión y supervisión continua.

 

IBM cree que, para aprovechar el potencial transformador de la IA, es necesario el compromiso activo de desarrollarla y usarla de manera responsable, para prevenir resultados discriminatorios que podrían perjudicar a las personas y a sus familias. Un aspecto crítico del desarrollo responsable de la IA es el enfoque en la identificación y mitigación de los sesgos. En los últimos años, IBM ha compartido los resultados de investigaciones, ha puesto a disposición herramientas y ha proporcionado a las empresas y a sus consumidores una mejor comprensión de los sistemas de IA. Esto incluye el kit de herramientas de AI Fairness 360, AI FactSheets e IBM Watson OpenScale, así como las nuevas capacidades de IBM Watson, diseñadas para ayudar a las empresas a crear una IA confiable.

 

El año pasado, IBM Policy Lab hizo un llamado a una “regulación de precisión” para fortalecer la confianza en la IA, con un marco basado en principios como la responsabilidad, la transparencia, la equidad y la seguridad, que solicitaba tomar medidas a la industria y los gobiernos. A la luz de cómo ha evolucionado el diálogo público sobre los sesgos en IA, esa perspectiva es más importante que nunca. Es por lo que, en respuesta a la atención renovada sobre las desigualdades y la forma en que la tecnología -en áreas como la justicia penal, servicios financieros, atención sanitaria y recursos humanos- puede ser mal utilizada para exacerbar las injusticias, IBM sugiere que los encargados de la formulación de políticas públicas tomen medidas adicionales para dar forma a un entorno legislativo adecuado que aborde las preocupaciones legítimas de la sociedad.

 

IBM se compromete con la defensa de la diversidad, la equidad y la inclusión en nuestra sociedad, economía y la tecnología que construimos. Como tal, solicitamos a los gobiernos que implementen cinco prioridades para fortalecer la adopción de pruebas, evaluaciones y estrategias de mitigación de los sesgos en los sistemas de IA:
1. Reforzar el conocimiento y alfabetización en IA para toda la sociedad. Una mayor comprensión sobre qué es la IA, sus beneficios potenciales y cómo interactuar con los sistemas podría acelerar su crecimiento y la confianza en ellos. 2. Requerir evaluaciones y pruebas para los sistemas de IA de alto riesgo, centrándose en proteger a los consumidores, al tiempo que permite la innovación. 3. Exigir transparencia en la IA a través de la divulgación. Los desarrolladores y propietarios deben informar a los usuarios cuando interactúan con tecnologías de IA con poca o nula participación humana, así como cuando se utiliza un sistema de IA de alto riesgo.
4. Solicitar mecanismos para la revisión y retroalimentación de los consumidores. Los operadores de aplicaciones de alto riesgo deben poner a disposición canales de comunicación (por ejemplo, correo electrónico, número de teléfono o dirección postal) para recibir las preguntas, preocupaciones o quejas de los usuarios.
5. Establecer limitaciones universales al uso de la IA y adoptar prácticas responsables de licenciamiento. Para evitar que los sistemas se aprovechen para usos ilegales, irresponsables y perjudiciales, IBM solicita el establecimiento de limitaciones universales al uso de aplicaciones de IA de alto riesgo para prohibir su empleo en vigilancia masiva, discriminación racial y la violación de los derechos humanos y las libertades básicas.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *